
JPL D-16168 http://eis.jpl.nasa.gov/quality/qadc/software.htm

Applying Integrated Safety Analysis Techniques
(Software FMEA and FTA)

November 30, 1998
Quality Assurance Office

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

JPL D-16168 http://eis.jpl.nasa.gov/quality/qadc/software.htm

2

Applying Integrated Safety Analysis Techniques
(Software FMEA and FTA)

Prepared by:

_______________________________ ________________________________

Robyn R. Lutz Hui-Yin Shaw
Task Lead Task Co-Lead

Reviewed and Approved by:

__________________________ __________________________

Burton C. Sigal John Kelly
Software Assurance Supervisor ATPO Software Applications Program, PEM

November 30, 1998
Quality Assurance Office

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

JPL D-16168 http://eis.jpl.nasa.gov/quality/qadc/software.htm

3

Applying Integrated Safety Analysis Techniques
(Software FMEA and FTA)

TABLE OF CONTENTS

1. Introduction...4
2. Process Description ..5

2.1 System-Level Hazards Analysis..5
2.2 Software FMEA ...5
2.3. Integrated Component-Level Safety Analysis...6
2.4. Review ..6

3. Applications ..7
3.1. Software FMEA ..7

3.1.1 MM Impact-Related Software FMEA...7
3.1.2 MM Water Experiment Software FMEA..8

3.2 Component-Level Safety Analysis ..9
3.2.1 Integrating System and Software FMEAs...9
3.2.2 Integrating Component-Level FMEAs and FTAs with Top-Level Software FTA......................................10

3.3 Web-Based Application ..11
4. Lessons Learned... 12
References.. 15

Summary

This report describes recommended process features for integrating the software and system safety
techniques of SFMEA/FMEA and SFTA/FTA, with examples drawn from applications to the New
Millenium Program (NMP) Mars Microprobe Project (MM) and the Earth Observing System's
Microwave Limb Sounder (MLS). The process integrates Software Failure Modes and Effects
Analysis (SFMEA) and Software Fault Tree Analysis (SFTA) into the system-level hazard analysis.
The main lessons learned from the applications are discussed. These include (1) flexible use of the
techniques, (2) a risk-driven rather than sequential approach, (3) "zoom-in/zoom-out" use of
SFMEA/SFTA, (4) SFMEA and SFTA as complementary techniques, (5) preserving traceability,
and (6) applicability to fault protection software. Since one obstacle to expanded use of
SFMEA/SFTA is the lack of web-based support, an experimental web-database tool with improved
data-sharing and data-search capabilities for SFMEAs was developed and demonstrated. This work
was funded by NASA Code Q RTOP UPN 323-08-5I.

JPL D-16168 http://eis.jpl.nasa.gov/quality/qadc/software.htm

4

1. Introduction
This report describes the integration of the existing software safety techniques of Software Failure
Modes and Effects Analysis (SFMEA) and Software Fault Tree Analysis(SFTA) into the system
engineering process and demonstrates their use on one spacecraft project and one instrument
project. The lessons learned from these applications are discussed. These include (1) flexible use of
the techniques, (2) a risk-driven rather than sequential approach, (3) "zoom-in/zoom-out" use of
SFMEA/SFTA, (4) SFMEA and SFTA as complementary techniques, (5) preserving traceability,
and (6) applicability to fault protection software. A web-database tool was demonstrated which
improved data-sharing and data-search of the SFMEA information, thus enhancing the software and
system safety analyses.

This report is a product of a research effort funded by the NASA Software Independent Verification
and Validation Facility as a Center Software Initiative. The work reported here is an extension of
previously reported work on integrating software and system safety. Following Leveson [8],
software safety is defined to be freedom from undesired and unplanned events that result in a
specified level of loss. In the Deep Space 1 Project Safety Plan [1], safety-critical software is
defined as software that can command a hazardous function to happen or prevent a hazard from
occurring.

Current needs for higher reliability, reusable software, rapid development, and innovative software
architectures have focused attention on improving our requirements and design analysis techniques.
In earlier work for this software initiative, we investigated the use of the SCR* (Software Cost
Reduction) requirements toolset to support software safety by creating requirements models and
performing a design logic check against requirements and rules on two components of the New
Millenium Program's Deep Space 1 spacecraft software [10]. The research reported here shifts
attention to the design phase. It describes ways to integrate software and system safety analyses of
the software design, with application to the Mars Microprobe (MM) software and the Microwave
Limb Sounder (MLS) instrument.

SFMEA is a design analysis method that explores the effects of possible software failure modes on
the system. SFMEA is an extension of the hardware FMEA, which has been a standard engineering
activity since the 1970's. SFMEA has been used on flight projects at JPL (Galileo, Cassini, NMP
MM), primarily to verify the correct functioning of system-level fault protection software.

Briefly, SFMEA is a structured, table-based process of discovering and documenting the ways in
which a software component can fail and the consequences of these failures. It is most frequently
used during the design phase, but was also used during the requirements phase of Cassini. The
SFMEA process is guided by a set of standardized failure modes (e.g., "Wrong timing of data,"
"Abnormal process termination") which the analyst considers in turn.

The SFMEA is a form of forward (bottom-up) analysis in that the process traces the propagation of
anomalies from causes (failure modes) to local (subsystem or component) effects to global (system)
effects. One of the key benefits of SFMEA has been its usefulness in discovering unknown failure

JPL D-16168 http://eis.jpl.nasa.gov/quality/qadc/software.htm

5

modes by means of this structured analysis. See [11] for a more complete definition of the SFMEA
process.

Fault Tree Analysis (FTA) is a hazard analysis technique that works backward (top-down) from an
identified undesired event or hazard to discover its possible causes [8, 15]. It is widely used in the
systems and hardware areas [2, 6, 7], and has been successfully applied to software as well [9].

The effectiveness of the bottom-up SFMEA has been found to be increased by combining it with a
top-down SFTA. The SFMEA/SFTA combination allows the underlying combination of
circumstances that enable the failure mode to occur, as well as the likelihood of the identified failure
mode to be evaluated. The effectiveness of the SFMEA is also increased by integrating it with
existing system FMEA or system FTA. NASA's Software System Safety course recommends that a
SFMEA and SFTA be performed and spends a day-and-a-half of the four-day syllabus on those
safety techniques.

The work described below on the MM Project yielded process recommendations for how the
software and the system safety analysis can be more effectively integrated.

2. Process Description

2.1 System-Level Hazards Analysis
On Mars Microprobe, the project had already produced a system-level fault-coverage table, which
we used as the hazards analysis baseline. The table was included in the Mars Microprobe Spacecraft
Design document [14]. The table, entitled "Fault Coverage," listed for each key function (e.g.,
telecommunications) the types of faults that could occur (e.g., loss of uplink, loss of downlink, etc.)
and the coverage that is provided for each of these fault types. Some of the fault types involved
hardware failure, some involved software failure, and some involved both. The coverage for some
faults was, at least in part, software-based. Response to these faults usually entailed software
control of hardware devices. The coverage for other faults was hardware-based, e.g., a watchdog
timer.

2.2 Software FMEA
In this step, we verified the adequacy of the software handling of the fault types described in the
system-level fault coverage table. We did this by performing a SFMEA for three of the critical
functions: Telecommunications, impact-related activities (Impact Loss Monitor, Accelerometer-Off
Response, and Impact Detection and Penetration Measurement event), and Water Detection.

The Telecommunication subsystem (Telecom) is a crucial component in communicating science and
engineering data from the microprobe to the orbiting spacecraft (the orbiter) for transmission back
to the Earth. The Telecom consists of an antenna and a microprocessor controlled
transmitter/receiver located on the aftbody of the microprobe. It gathers temperature and pressure
data from various locations on the aftbody, combines this data with data supplied by the Advanced
Microcontroller (AMC) subsystem, and formats and encodes the data for transmission to the orbiter.

JPL D-16168 http://eis.jpl.nasa.gov/quality/qadc/software.htm

6

Impact Detection is critical because the Mars Microprobe is a single stage from separation from the
orbiter to its impact with the Martian surface. It has no active control, attitude, or propulsive
systems. The Impact Detection and Penetration Measurement portion of the Entry, Descent and
Impact sequence will initiate and take impact and penetration measurements, transfer these science
and engineering data to the Telecom and set a task completion mark to signal for the start of Landed
Mission which includes soil and water experiments.

The Water Detection Experiment is critical because the data from the water experiment has been
identified as "Critical Science Data" that the mission is required to return. Shortly after impact, a
small drill will collect a subsurface soil sample and return the soil to the water experiment's sample
cup. The water experiment is designed to detect whether subsurface ice is present and to measure
the temperature at which any water vapor is released. Onboard fault protection software exists to
aid in recovery from failures during this phase of the mission. The key findings from the SFMEA
and the recommended design changes are summarized in Section 3.1.

The SFMEAs were reviewed by several Mars Microprobe engineers. Their feedback, as well as
changes to the design, were then incorporated into a final SFMEA, again delivered to the project.
The Mars Microprobe project performed system-level interface FMEAs. We looked at the interface
FMEAs, but since they were hardware-based analyses, there was little overlap in issues with the
SFMEAs. The Project had also initially planned to perform additional system-level FMEAs. When
these were later descoped, the results of the SFMEAs provided some assurance to the Project
regarding the adequacy of the fault protection coverage.

2.3. Integrated Component-Level Safety Analysis
 The Telecom entry in the fault-coverage table described above was expanded into a subsystem (also
called component-level) FMEA. The Telecommunications subsystem FMEA was reconstructed
with information from the Spacecraft Design Document. The subsystem FMEA traced forward
from the occurrence of subsystem faults to check whether their effects were acceptable.

We also expanded the entry for Water Detection in the fault-coverage table into a component-level
FTA. The FTA traced backward from the occurrence of the faults to check whether their root
causes were prevented or mitigated. The main results from these safety analyses are described in
Section 3.

2.4. Review
Review of the results was ongoing, as described above. The final version provided to the Project
incorporated the comments from the reviews, updated the SFMEAs to match design changes, and
corrected errors in the preliminary analysis results. The final version included a description of the
issues for additional design analysis and/or testing. Follow-up was recommended to ensure that the
final code handles the hazards identified.

JPL D-16168 http://eis.jpl.nasa.gov/quality/qadc/software.htm

7

3. Applications
This section describes the applications of the integrated software safety analysis techniques to the
New Millenium Program Mars Microprobe Project (MM) and the Earth Observing System's
Microwave Limb Sounder.

The Mars Microprobe Project, also known as the Deep Space 2 (DS-2) mission, consists of two
identical microprobes that will penetrate the Martian surface [13]. The mission will validate
technologies which will enable future planetary network missions (e.g. simultaneous deployment of
multiple landers, penetrators, etc.) while at the same time collect meaningful science data on Martian
soil conductivity, meteorology, and subsurface ice.

Each microprobe consists of two major components: the surface (aftbody) module and a subsurface
(forebody) module. The aftbody contains the battery system, telecommunication system (or the
Telecom), power turn-on switch, atmospheric pressure sensor system, solar detector and descent
accelerometers. The forebody contains the flex deployment system, sample/H20 experiment, power
electronic system, soil thermal conductivity experiment, impact accelerometer, instrument electronic
system, and AMC. AMC is the Advanced Microcontroller which contains critical software that runs
the forebody functions and the related fault monitor and response modules.

The Earth Observing System (EOS) Microwave Limb Sounder (MLS) instrument, currently under
development, will support an investigation that will improve understanding and assessment of
stratospheric ozone depletion and chemistry, tropospheric ozone distribution and chemistry, and
climate change and variability [3]. The MLS instrument will measure naturally occurring microwave
thermal emission from the limb of Earth's atmosphere to remotely sense vertical profiles of selected
atmospheric gases, geopotential height, temperature and pressure. The MLS instrument will fly on
the EOS Chemistry platform to be launched in December 2002. The instrument comprises physical
and electronic elements that acquire scientific measurements. It is the successor to the highly
successful MLS on the Upper Atmosphere Research Satellite.

3.1. Software FMEA

3.1.1 MM Impact-Related Software FMEA

The FMEA technique was employed in the MM impact-related software safety analysis. The
purpose of this exercise was to verify the adequacy of the software handling of impact-related faults
described in the system-level fault coverage table. The objectives included identifying critical
software failures and assessing the appropriateness of the fault avoidance and mitigation and of the
recovery sequence. The impact-related fault monitor and response and the event sequence were
evaluated: Impact Loss Monitor, Accelerometer-Off Response, and Impact Detection and
Penetration Measurement event.

This study yielded the following results: 1. Clarification of sequence and fault response and
clarification of software variable in an anomalous event, 2. Recommendation of test cases, and 3.
Identification of a software fault avoidance.

JPL D-16168 http://eis.jpl.nasa.gov/quality/qadc/software.htm

8

Some key questions involving unclear definition and missing information for anomalous scenarios
surfaced during this study. For example, in the case of no impact detection, the transfer of science
and engineering data from the forebody to Telecom was not included in the event sequence or in the
fault response module. The definition of impact time was unclear in the design document; it wasn’t
clear what the value of impact time would be in the event when no impact is detected. This impact
time is used in the Soil Thermal Conductivity Experiment sequence. These findings were considered
by the Design Engineer for inclusion in a future document update.

Failure entries in the SFMEA marked with medium and high criticality were evaluated for the
appropriateness of fault identification, avoidance and/or mitigation. Several medium to high
criticality failures were identified as verifiable in test (i.e., tests can be performed to verify the
absence of potential faults). Recommendation was made to the Project to include these test cases.

In this study, most of the highly critical failures involve software hang-up. Depending on when in
the event sequence the hang-up occurs, such hang-up may cause missed science experiment data
(with fault protection and recovery sequence in working order). A discussion with the software
developer, a subject matter expert, was conducted to identify sources leading to possible software
hang-up. It turned out that a potential software hang-up exists when a particular assembly command
is executed at the same time that a certain built-in interrupt timer goes off (therefore the software
hang-up may be sporadic and difficult to debug). A fault avoidance method was recommended by
the subject expert to disable (and later enable) the timer before execution of this particular assembly
command.

3.1.2 MM Water Experiment Software FMEA

Eight issues were raised in the preliminary SFMEA (see Table 1). All were resolved, most by
subsequent re-design. (Note that the re-design was initiated by the Project independently of the
analysis done here.)

Table 1. Water Experiment SFMEA Issues

SFMEA Issue: Resolution:
Some data not used? All data used; documentation updated
Data dictionary needed Table of Mission Sequence Variables added
Add two watchdog timers or timeouts? Functionality handled by current electronics
Possible unintended design constraint Re-design eliminated software at issue
Flag not used or needed in current design Re-design creates and uses set of markers

(checkpoints)
Duration of sample heating ambiguous Values updated
Algorithm for detection of sample not stated Clarified in update
Add nominal rate at which data buffer fills Re-design adds limit on time available to fill data

buffer

JPL D-16168 http://eis.jpl.nasa.gov/quality/qadc/software.htm

9

3.2 Component-Level Safety Analysis
3.2.1 Integrating System and Software FMEAs

A subsystem (component-level) FMEA table was constructed for the Telecom subsystem with the
information obtained from the system design document [14]. This exercise showed that performing
FMEA on a critical (sub)system, component, or function could help identify areas requiring fault
monitor and response modules. These monitor and response modules are identified in the Failure
Detection/Correction column of the FMEA table. These modules can involve hardware, software or
both. Table 2 shows an excerpt from the Telecom subsystem FMEA.

Table 2. Excerpt from Telecom Subsystem FMEA

Function/
Event

Failure
Mode

Failure
Detection/
Correction

Effect Criticality Remark

Telecom
Sequence

General
recoverable
Telecom
software or
hardware
failure

(M) Telecom
Watchdog
Timer [h/w];
(R) Telecom
Hardware
Reset [s/w];
(R) Telecom
Safing [s/w]

The Telecom mission
sequence is resumed at
the next appropriate
mark point.

High Protects against
Telecom software or
hardware failure.

Forebody/
Aftbody
Communi-
cation

Loss of
Forebody

(M) Umbilical
Loss [h/w &
s/w]

(R) Telecom
Autonomous
Control [s/w]

M: fault
monitor

R: fault
response

Telecom will enter
autonomous mode: Go to
listen mode and sample
and store aftbody science
and engineering data
once an hour.

AMC can command
Telecom out of this mode
at any time - by AMC
resetting Telecom
autonomous watchdog
timer

High Protects against loss of
mission due to failure
in AMC to
communicate with
Telecom (caused by
forebody under-
voltage, tether
breakage, or AMC
loss)

The subsystem FMEA table and the subsequent fault monitor and response design lay the
groundwork for the top-level (requirements/design-level) software safety analyses. In our study,
three of the software-controlled monitor and response modules from the Telecom subsystem FMEA
were expanded into the top-level software FMEA.

The three modules studied were the Umbilical Failure monitor, the Telecom Autonomous Control
response for the Loss of Forebody failure, and the Telecom Hardware Reset response for general

JPL D-16168 http://eis.jpl.nasa.gov/quality/qadc/software.htm

10

recoverable Telecom software or hardware failure. These modules were chosen because the loss of
Forebody communication with Telecom could have a major impact on the primary science objective
of this mission, and the Telecom Hardware Reset response module plays an essential role in the
general recovery of Telecom failures.

At the time when we were conducting this SFMEA study, the MM Project was transitioning into
test phase. As it turned out, all the highly critical software failures identified in this study were
verifiable in test for software implementation correctness. Therefore, recommendation was provided
to the project for inclusion of these failure scenarios in their test cases.

Some of the lessons learned during the application of the integrated safety techniques on Mars
Microprobe were considered to be transferable technology. These lessons are summarized in Section
4 and formed part of the input to the process for MLS analysis. Since MLS is at an earlier phase of
development than Mars Microprobe, the system-level analysis performed to date has been primarily
hardware-oriented. Techniques such as SFMEA that focus on the software's contribution to system
fault coverage can be used to expand analysis of critical components or capabilities.

3.2.2 Integrating Component-Level FMEAs and FTAs with Top-Level Software FTA

In the EOS MLS project, the component-level FMEAs were reviewed for potential failures where
software might play a part. The components studied included the Giga Hz (GHz) Module which
contains the Antenna Actuator Assembly and the Switching Mirror Assembly, and the Tera Hz
(THz) Module which contains the Scan/Switching Assembly [4]. It was found that similar failure
types appeared among the component-level FMEAs, e.g., "Loss of Bus Synchronization" failure
mode appears in GHz and THz FMEAs. When appropriate, we generalized these common failures
when performing the top-level SFTA. Each of the selected failures became the top-level hazardous
event (root node) of a SFTA. For each root node hazard, we worked backwards (top-down),
expanding each sub-node until a basic fault event was reached (a leaf of the fault tree), or until no
further analysis could be performed [16].

A discussion with the software engineer on the SFTAs proved beneficial. Several follow-up items
and a few further analyses were proposed as a result of this meeting. Feedback from the software
engineer was incorporated into the final SFTA. The software engineer felt that this was a
worthwhile exercise in evaluating all the possible failures/faults and their avoidance and mitigation.

Four MLS component-level FTAs were also reviewed. They include the Antenna Launch Latch, the
Antenna Actuator Assembly, and two Scan/Switching Mechanisms. Faults (or leaf nodes of Fault
Trees) that may be attributed to software failure were identified. These selected component faults
became the root node hazard (or the root of a fault tree) for the next lower-level FTA, in this case,
the top-level software FTA. The same software FTA procedure was performed as in the
component-level FMEA to top-level software FTA study.

It is worthwhile to note that in system and component level FMEAs and FTAs, the analyses are
most frequently hardware-parts oriented. Software and operational attributed faults at the system or

JPL D-16168 http://eis.jpl.nasa.gov/quality/qadc/software.htm

11

component level are often not being considered. For example, “commanding failure” (software and
operational) can be included as a sub-node to the node "Latch Fails to Open” in the Latch FTA.

This work was performed based on the latest versions of the MLS component-level FMECAs and
FTAs available at the time of this study (mostly draft/working versions). The final component-level
FMECAs were later reported in the EOS MLS System-Level FMECA. The draft component-level
FTAs were internal working document and memos. The resulting top-level software FTAs have
identified the following types of fault tree leaf nodes:

• Software faults verifiable in test: e.g., command format error, telemetry transmission scheme
compatibility

• Lower-level (source code) analysis required: e.g., the need to determine
software/mechanism behavior resulting from out-of-range command parameters and for
consideration of adding exception handling or software assertion for fault avoidance or
mitigation

• Operational errors: e.g., incorrect command sequence, wrong or out-of-range command
parameters

• Hardware-attributed faults: e.g., electronic noise induced command bit drop in the bus
• External faults: e.g., spacecraft telemetry pickup error. Note, the spacecraft and the MLS

instrument are separate entities in this problem domain.

The MLS top-level software FTAs also validated the adequacy of software commands for the
control of hardware mechanisms. Furthermore, one mission critical hardware component was
identified (the real-time interrupt generator). While this hardware component has a redundant unit,
the instrument recovery mechanism requires verification. Additional findings from the top-level
software FTA include:

• Further analysis required: e.g., instrument/software behavior resulting from executing a
command in an inappropriate mode; instrument/software behavior resulting from execution
of corrupted command; communication error recovery scheme

• Follow-up cases were identified: e.g., to determine the appropriate reset mechanism for
Remote Interface Unit of the MLS instrument

• Workarounds identified: e.g., re-send command when command is corrupted; the flexibility
of software allows for in-flight software change to respond to faulty register memory map.

3.3 Web-Based Application
Data from safety analysis can become massive and unmanageable in a relatively short period of time.
To manually sift through these data for specific information is tedious and carries the risk of
inadvertently overlooking critical data.

A web-based database application can link upper-level safety analyses to lower-level analyses. For
example, a system FMEA can be linked to a component-level FMEA, and these can be linked to
specific software and hardware FMEAs. This allows better traceability of safety-critical elements
from the system to the software and the hardware, and to their fault avoidance or mitigation

JPL D-16168 http://eis.jpl.nasa.gov/quality/qadc/software.htm

12

strategies. Depending on the project’s needs, links to safety requirements, tests, event sequences or
design can also be implemented. The tool can also provide options to do a search in an area of
interest, such as failure criticality, failure modes, or affected requirements. Restricted editing
capabilities can support on-line updates. When developing an application such as this web-based
tool, the tool developer should work with the intended application users to ensure that the tool
meets the needs of the intended users.

In our experimental tool development, we were limited to the tools that were available to us. Cold
Fusion from Allaire was used to create dynamic Web pages and to interact with Microsoft Access
database. The performance of this experimental tool was not a consideration. This web-based safety
analysis application stores the FMEA results and provides the ability to do search and report on the
FMEA entries. Each FMEA can be stored as a table in the web database application. For example, a
subsystem FMEA for Telecom is stored as one table, and a software FMEA is stored as another
table. A user can search on criticality, testability, and /or failure modes in any selected combination
of tables. An additional search option that would be useful is “Affected Requirements.” However,
this feature was not implemented in the experimental tool because the information was not included
in our FMEA study.

The experimental web-based tool demonstrated that we could quickly locate the information we
needed to help us do our work. For example, we could quickly identify failures that were identified
as testable in the earlier safety analyses and use this information to follow up in test planning and test
verification when appropriate. A web-based safety analysis information retrieval tool can benefit
projects in several ways. Most importantly, the safety analysis results can be readily accessible to
project developers and analysts for follow-up and further analysis of critical issues. Similarly, safety-
critical information can be easily available for anomaly impact analyses and for requirements or
design change impact assessments.

4. Lessons Learned
The lessons learned in the application of the integrated software and system safety techniques are
summarized below. These are recommended elements of any similar process.

1. Flexible use.

We found that a key advantage of the integrated approach is that the focus of the analysis can be
tailored to the needs, phase, and available documentation of the specific project. On Mars
Microprobe this meant using the existing hazards analysis work that had been done as a baseline,
extending the analysis (via SFMEA) in the directions that were of most concern to the project, and
performing component-level general analysis (FMEA/FTA) subsequent to the component-level
software analysis (rather than having the broader analysis precede the software analysis, the more
common sequencing).

JPL D-16168 http://eis.jpl.nasa.gov/quality/qadc/software.htm

13

2. Risk-driven

An advantage of the integrated SFMEA/SFTA approach is that it allows a progressive re-focusing
of attention on those components or faults that are currently of greatest concern. For one
component, a SFMEA followed by a verbal walkthrough with experts (rather than a FTA) resolved
the open issues. For another component, a SFMEA was later supplemented by a FTA to follow up
on some issues of concern. SFMEA and/or SFTA can be performed only for those components
perceived as possibly presenting unacceptable risk, or SFMEA/SFTA can be applied selectively to
differing levels of detail on different components, all depending on the project's needs.

3. "Zoom-in/zoom-out" use of SFMEA/SFTA

A consequence of the flexible use of SFMEA/SFTA is that it can provide a "zoom-in/zoom-out"
approach to analysis of critical components. Selective targeting of issues of concern, designs that
have changed, or areas that raise unresolved questions is possible. A "zoom-in" can be chosen to
examine more closely a particular piece of the system or the effect of a particular scenario.
Similarly, a "zoom-out" can be chosen to examine a wider piece of the system when the interest is in
the component's interfaces rather than in, e.g., a fine-grained description of all possible events
leading to a particular state. This capability of SFMEA/SFTA to allow the analysis to be tuned to
the evolution of the system is useful. On Mars Microprobe, for example, questions that arose during
the initial analysis of one component (Impact Detection) led both to a quick "zoom-out" review of
the system-level interface FMEA (to check if there were any related software issues) and to a
"zoom-in" on the SFMEA issue regarding software hang-up to identify software fault avoidance.

4. SFMEA and SFTA as complementary techniques

SFMEA and SFTA have a well-established and well-deserved reputation as complementary
techniques [5, 12]. Integrating a forward search for the consequences of failure modes (SFMEA)
with a backward search for contributing causes has been shown to be successful in identifying
inconsistent, missing, and incorrect requirements [11]. In particular, the combination has been used
to identify unexpected dependencies and interactions in the system. Some researchers have
performed SFMEA as a preparatory activity to fault tree construction (e.g., [12]). Others have
recommended first performing a backward search for causes (FTA), and then considering the effects
of each failure (as in a FMEA). HAZOP, a safety analysis technique originating in the chemical
industry that performs backward analysis first, has been a major influence on efforts to integrate
SFMEA and SFTA [8].

On Mars Microprobe we primarily performed SFMEA, since the Project had identified the critical
faults that needed coverage in the system. Backward analysis from the faults to their contributing
causes (SFTA) was performed less, since the causes of the faults were nearly all hardware or
environmental (e.g., landing) failures. These hardware failures had been extensively researched.
Since our concern was mainly with the software/system interaction, we were led to forward analyses
from system failures to their software (i.e., fault protection) responses.

JPL D-16168 http://eis.jpl.nasa.gov/quality/qadc/software.htm

14

5. Preserving traceability

Leveson makes a useful distinction between forward and backward searches which trace forward (to
effects, e.g., SFMEA) or backwards (to causes, e.g., SFTA) in time, and top-down and bottom-up
searches, which involve levels of abstraction [8]. The traceability between the forward and backward
search is temporal; the traceability between the top-down and bottom-up search involves refinement.
The traceability between SFMEA/SFTA, as discussed above, is usually the temporal movement from
failure causes to failure effects.

SFMEA/SFTA can also be performed on a single system at varying degrees of detail, in which case
the traceability is between higher-level and lower-level analyses. Because SFMEA/SFTA can be
done at several levels of detail, traceability among levels is sometimes explicit. For example, failure
effects in a lower level FMEA may be the failure modes in the left hand column of a higher-level
FMEA. Similarly, for FTA, a single node in a high-level tree may be broken down into a more
detailed FTA.

As Leveson points out, a bottom-up search that examines only the effects of individual component
failures on the system may miss hazardous system behavior resulting from combinations of
subsystem behaviors. On the other hand, a top-down search may be an inefficient way to determine
the effect of a particular component behavior.

6. Applicability to fault protection software

SFMEA/SFTA is a labor-intensive effort, best suited to innovative, poorly understood, or critical
components. In this case, our interest was in SFMEA/SFTA as safety analysis techniques, so we
chose critical fault protection software for the application. SFMEA is well-suited to analysis of fault
protection monitors and responses. For monitoring software, SFMEA was used to check that false-
positives were not produced and that adequate reasonableness checks were performed on the values
used to make control decisions. For fault protection software that responds to faults, SFMEA was
used to check that the effect of the response (e.g., reconfiguration, try-again, etc.) matched the
intent of the fault response. The SFMEA results provided some assurance that the fault coverage
asserted in the design document was adequate and robust.

Acknowledgments

We thank Sarah Gavit, Kari Lewis, Parviz Danesh, Bob Detweiler, and Robert Nowicki on MM;
Gary Lau, Dennis Flower, Marc Walch, Mike Girard, Mark Boyles, Philip Szeto, John Klohoker,
and Johnathan Carson on MLS; and Paul Davis for assistance with the web page application.

JPL D-16168 http://eis.jpl.nasa.gov/quality/qadc/software.htm

15

References
1. Deep Space 1 Project Safety Plan, JPL D-13533, October, 1996.

2. DeLemos, R., A. Saeed, and T. Anderson, "Analyzing Safety Requirements for Process-Control
Systems," IEEE Software, Vol. 12, No. 3, May, 1995, pp. 42-52.

3. Earth Observing System, Microwave Limb Sounder Project homepage, http://mls.jpl.nasa.gov/.

4. Earth Observing System Microwave Limb Sounder, System-Level Failure Modes, Effects, and
Criticality Analysis, JPL D-16088, Version 1.0, September 1, 1998.

5. Fenelon, P. and J. A. McDermid, "An Integrated Tool Set for Software Safety Analysis," Journal
of Systems and Software, Vol. 21, July, 1993, pp. 279-290.

6. Hansen, K. M., A. P. Ravn, and V. Stavridou, "From Safety Analysis to Software
Requirements," IEEE Transactions on Software Engineering, Vol. 24, No. 7 July 1998, pp. 573--
584.

7. Knight, J. and L. G. Nakano, "Software Test Techniques for System Fault-Tree Analysis," 1997.

8. Leveson, N. G., Safeware: System Safety and Computers. Addison-Wesley, 1995.

9. Leveson, N. and P. R. Harvey, "Analyzing software safety," IEEE Transactions on Software
Engineering, SE-9(5), Sept, 1983, pp. 569-579.

10. Lutz, R. and H.-Y. Shaw, "Applying the SCR* Requirements Toolset to DS-1 Fault
Protection," JPL D-15198, December 1997, http://eis.jpl.nasa.gov/quality/qadc/software.htm

11. Lutz, R. and R. M. Woodhouse, ``Requirements Analysis Using Forward and Backward
Search,'' Annals of Software Engineering, Special Volume on Requirements Engineering, 3 (1997),
pp. 459--475.

12. Maier, T., "FMEA and FTA To Support Safe Design of Embedded Software in Safety-Critical
Systems," CSR 12th Annual Workshop on Safety and Reliability of Software Based Systems,
Bruges, Belgium, 1995.

13. Mars Microprobe Project homepage, http://nmp.jpl.nasa.gov/ds2/

14. Mars Microprobe, Spacecraft Design, MMP/SPEC-03, D-14222, Rev. A, 11/13/97 and Rev. B
Draft, 1/22/98.

15. Pfleeger, Shari Lawrence, Software Engineering: Theory and Practice. Prentice-Hall, 1998.

16. Sommerville, Ian, Software Engineering. Addison Wesley, 1996.

